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Abstract

This second instalment on non-linear waves examines in detail the effects caused by interactions between different
solutes in multicomponent systems. Emphasis is on concepts and qualitative insight, and mathematics is kept at a minimum.
To avoid unnecessary complications, the assumption of ideal theory are taken for granted. In the discussion, no restrictions
are imposed on the nature of equilibria between the moving and sorbent phases and on the number of components. However,
all examples are of two- and three-component systems with competitive sorption equilibria.
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1. Introduction

The most general feature of multicomponent non-
linear wave phenomena, in chromatography as else-
where, is that a single variation of conditions at the
entry to the system is propagated in the form of a
whole set of waves that travel at different velocities.
Elution development and frontal analysis can be
viewed as manifestations of this principle. Waves
from successive entry variations may interfere with
one another. The concept of coherence is introduced
for an examination of such phenomena: An arbitrary
composition variation, whether imposed at the col-
umn entry or arising from wave interference within
the column, is in general noncoherent and is resolved
into a set of coherent waves that separate from one
another as they travel. This insight makes it easier to
understand column responses under complex oper-
ating conditions and provides a key to efficient
mathematics. The use of the tools of coherence
theory for the prediction of column responses is
discussed and illustrated with examples.

Part I of this series has dealt with fundamental
properties of non-linear waves in single-component
chromatography [1]. While suited to introduce the
concepts of self-sharpening and nonsharpening
waves and of shocks and shock layers, this topic is
primarily of academic interest. In practice, chroma-
tography as a separation technique is a multicom-
ponent problem almost by definition. The non-
linearity in chromatography results from interactions
between solute molecules, e.g., from their competi-
tion for adsorption sites. It would be naive to assume
that molecules interact only with their own kind, not
with those of other solutes. Since a single-component
isotherm accounts only for interactions between
molecules of the same solute, not with those of
others, it does not adequately describe sorption of the
respective solute from mixtures in the non-linear
range: The non-linear chromatographic response in a
multicomponent system cannot be compiled by
superposition of non-linear responses calculated for
single components.

The present, second part of the series examines
specifically the phenomena that arise in chromatog-
raphy from the presence of several solutes that affect
one another’s behavior. In terms of wave theory, the

key elements are the generation of entire sets of
waves by one single composition variation at the
column inlet, the interference of waves that origi-
nated at different times or locations, and the develop-
ment of ‘coherent’ patterns from arbitrary starting
variations and from such interferences [2]. As in the
preceding part, the discussion will center on con-
cepts, insight, and use of the tools which theory
provides. Mathematics will be kept at a minimum.
An overview of mathematics, not needed for con-
ceptual understanding, will be given in Appendix A.
Examples of practical cases including frontal analy-
sis, elution from a uniformly saturated column,
elution of a pulse under overload conditions, dis-
placement development, and elution with a buffer
will illustrate applications of concepts and theory.
The last of these examples, on elution with a buffer,
demonstrates that it is often possible to obtain
valuable information from wave theory without
recourse to more than a minimum of simple algebra.

So as to steer clear of complications that would
distract from the characteristic effects caused by
interactions of different solutes, the assumptions of
ideal chromatography will be taken for granted.
Specifically, these are: (1) local equilibrium between
moving and sorbent phases; (2) ideal plug flow; (3)
mass transfer in axial direction by convection only;
(4) axially uniform volumetric flow-rate of bulk
moving phase; (5) isobaric behavior; (6) isothermal
behavior; and (7) absence of chemical reactions that
transform solutes (except adsorption or chemisorp-
tion). The effects of nonidealities are largely the
same in multicomponent as in single-component
systems and were discussed in Part I (one minor
complication arising specifically in multicomponent
systems is outlined an appendix, see Appendix B. In
essence and with few exceptions, most notably at
extremely low mass-transfer rates and in nonisother-
mal systems, the only effect of nonidealities is to
make all waves less sharp than ideal theory predicts.
Nonidealities are very important because they affect
the sharpness of separation, but they do not alter the
general features of the response pattern, as do
interactions between different solutes. Thus,
nonidealities in non-linear chromatography can usu-
ally be accounted for by mere corrections to the
results of ideal theory, and fundamental insight can
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be gained from the latter alone. Moreover, in many
instances, corrections for nonidealities can be applied
one wave at a time, and so can be restricted in
practice to only the particular wave or waves that
affect the result of interest.

Some subtle, complicated points that contribute
little or nothing to general qualitative understanding
will be stated in square brackets. They may be
skipped without loss in continuity. The glossary of
symbols and terms gives explanations of symbols
and definitions of terms, some of which (such as
wave velocities or Riemann problems) mighf be
unfamiliar to the practical chromatographer.

Most of the three-dimensional diagrams showing
successive composition profiles were calculated with
the VERSE-LC computer program [3,4]. They are for
systems with fast but finite mass-transfer rates and
accordingly show a slight nonideal effect owing to
deviation from local equilibrium. This is because
execution times would be prohibitively long for
mass-transfer rates high enough to ensure a closer
approach to local equilibrium. We have made no
attempt to eliminate the slight nonideality, as could
easily have been done. The reason is that the
concentration profiles are easier to tell apart if the
shocks are not ideal discontinuities, and that the
slightly nonideal behavior is closer to reality.

The VERSE program is based on integration of the
differential mass-conservation equations and does
not employ wave theory. However, except for the
mentioned slight nonideality, there is good agree-
ment between its results and the composition—route
and distance~time diagrams constructed with wave
theory. The reader may view this as a demonstration
of reliability of VERSE or of soundness of wave
theory, depending on which of them he trusts less.

As in Part I, the discussion is in terms of sorption
as the underlying equilibrium mechanism. It is
equally valid for other equilibrium mechanisms of
distribution between the moving and stationary
phases, and is mathematically largely analogous for
stoichiometric 1on exchange [5].

Also as in Part I, the great majority of the findings
have been published previously, most of them by
other authors. However, no comprehensive review of
prior work is presented. Rather, only a small fraction
of it is quoted, selected for best illustration or proof

of relevant points. We apologize to those who qualify
for credit but have not received it.

2. Response signals and variance

To start out from solid ground, let us begin with
two phenomena with which the practical chroma-
tographer is thoroughly familiar: standard analytical
chromatography (often called elution development)
[6-9] and frontal analysis [10—14]. In the former, a
very small sample consisting of a mixture of solutes,
at concentrations so low that the linear range of the
sorption isotherms is not exceeded, is injected ahead
of the column into a continuous stream of solvent or
carrier gas; the mixture separates into single-com-
ponent ‘peaks’ that travel at different velocities,
emerging in the sequence of increasing affinity for
the sorbent (see Fig. 1). In frontal analysis, a fairly
concentrated mixture of solutes is injected continu-
ously and at constant composition into a column
initially free of sorbates; what results is successive
breakthroughs of the solutes, in the same sequence of
increasing affinity for the sorbent (see Fig. 2). That
frontal analysis should give rise to such a pattern is
easy to see: The sorbent layers near the inlet
preferentially take up the solute with highest affinity,
largely letting the other solutes pass because they are
less capable of competing for sorption sites; these
layers thus ‘filter out’ the solute of highest affinity.
Farther downstream, that solute is no longer present,
so the process repeats itself with removal of the
solute with next-highest affinity in the next layers,
and so on - the end result being a pattern with
successive ‘fronts” of different solutes between
‘plateaus’ (that is, regions of constant composition
or, in the language of mathematics, regions of
constant state) that grow in length in proportion to
the volume of solution that has entered the column.
Given competitive sorption equilibrium and absence
of selectivity reversals (e.g., a Langmuir-type multi-
component isotherm), all fronts are shocks.

In practice, such behavior would be observed, for
example, if the sorbent in Figs. | and 2 is a zeolite,
and the solutes 1, 2, and 3 are CO,, toluene, and
hexane, respectively, in air.

What is common to both elution development and
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Fig. 1. Elution development: operating procedure (top) and successive composition profiles (bottom). Parameter values k, = 12.0, k, = 6.0,
k,=3.0 @l in cm"/g) in sorption isotherm equation g, = k,c,; v = 3.1831 cm/min; ple=2.5 g/cm’; injected amounts 1 mmol each.

frontal analysis is that a single, momentary signal
(pulse or step) at the column inlet — a composition
pulse in elution development, a composition step in
frontal analysis — is propagated through the column
not as a single signal, but as a set of several that
travel at different velocities and become separated by
plateaus. This becomes strikingly apparent when one

looks at the trajectories which the waves trace in the
distance—-time field, that is, the bottom planes of the
concentration—distance—time diagrams in Figs. 1 and
2. Replotted in Fig. 3, the trajectories ~ of pulses in
elution development, of shock fronts in frontal
analysis — are seen to radiate out from a single point,
the origin at z=0, r=0, increasing their distances
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Fig. 2. Frontal analysis: operating procedure (top) and successive composition profiles (bottom). Parameter values ¢, = 12.0, a, = 6.0,
a,=30 (@@l in cm'/g), b, =20, b,=10. b,=050 (all in cm’/mmol), in Langmuir sorption isotherm equation g, =
ac/(1+ zlb,c,); v’ =3.1831 cm/min; ple =25 g/cm’; entering concentrations l=08M ci=12M, i =10M.

from one another as they advance through the
column at different velocities as time progresses.
Indeed, that a single variation at the entry of the
system is ‘resolved’ into an entire set of response
signals of different velocities is the most fundamen-
tal aspect of wave propagation in multivariant sys-

tems [15], in chromatography as in many other
fields, among them multiphase flow in permeable
media [16], sedimentation [17], and convective
transport with dissolution and precipitation [18]. Of
special interest in the present context is the addition-
al fact that, in non-linear multivariant systems in
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Fig. 3. Distance—time diagrams showing trajectories of pulses and shock fronts of elution development (left) and frontal analysis (right).

Conditions as in Figs. 1 and 2, respectively.

general, each response signal as a rule involves
variations of the values of all locally represented
dependent variables, even if the entering signal did
not. In frontal analysis, for example, every front
involves concentration variations of all solutes that
are locally present (of solutes 1, 2, and 3 at the front
of solute 1; of 2 and 3 at the front of 2; and of 3
alone at its front). That this is so in general will soon
become clearer.

Few practical chromatographers habitually think in
terms of distance—time diagrams. However, it is well
worthwhile to train oneself to do so because the
diagrams are invaluable for seeing what may and
may not happen in complex phenomena of wave
interference. The simple translation of the trajec-
tories in the bottom planes of Fig. 1 and Fig. 2 into
the distance—time diagrams in Fig. 3 may help the
unaccustomed reader to get used to this tool.

In the two examples above, the number of re-
sponse signals generated by a single variation at the
column inlet equals the number of sorbable solutes.
This is in general true in standard chromatography
based on isothermal adsorption or partitioning be-
tween a moving phase and a stationary sorbent and
will be taken for granted for the time being. More
accurately, the number of such response signals is
given by a quantity that has been called variance [19]

and can be viewed as the number of degrees of
freedom of the system.' The variance, in turn, equals
the number of dependent variables (solute concen-
trations in standard chromatography) minus the
number of mathematical constraints. For instance,
the variance in standard n-component isothermal
adsorption chromatography is n; that in n-component
non-isothermal adsorption chromatography is n + 1
because temperature is an additional dependent
variable; and that in stoichiometric n-component
isothermal ion exchange with dilute solutions is
n —1 because the requirement of stoichiometric
exchange (a consequence of the requirement of
conservation of electroneutrality in both the moving
phase and the ion exchanger) imposes a constraint.
Of course, it is always possible that one or more of
the response signals of a set remain vanishingly
small, so that fewer than indicated by the variance
are actually observed. [In exceptional cases, more
response signals may be generated than the variance
indicates. This is possible, for example, if the
entering composition variation involves a selectivity
reversal [20,21].]

"This quantity is not related in any way to the variance of
statistics, often used in linear non-ideal chromatography to
characterize the width of a Gaussian peak.
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3. Waves and wave velocities

For the benefit of the reader who has not studied
Part I and does not intend to do so, a brief summary
of the definition and properties of waves is given
here.

A wave is defined as a monotonic variation of the
dependent variables (concentrations in standard iso-
thermal chromatography). For instance, each of the
advancing fronts in frontal analysis is a wave; each
peak in elution development consists of two waves:
its front and its rear. Thus, in elution development
the number of response waves is twice the variance
of the system, but they are generated by two entering
waves: the front and rear of the injected pulse
containing the sample.

In non-linear chromatography a wave may be
self-sharpening (compression wave in the language
of physics of fluids) or nonsharpening (dispersive
wave or rarefaction wave in that language). If
initially diffuse, a self-sharpening wave sharpens into
a shock and then continues its travel without further
change in its profile. A nonsharpening wave, whether
sharp or diffuse initially, spreads as it travels. In
ideal chromatography, a self-sharpening wave shar-
pens into, or remains, an ideal shock, that is, a
composition discontinuity; a nonsharpening wave
spreads linearly with traveled distance.

In ideal chromatography, a given concentration c,
of a solute i within a diffuse wave advances at its
‘natural velocity’, given by’

0

v :
Yo T T+ (ple)dq,/dc, (L4
and a shock advances at the velocity
0
v
Uy (1.6)

<@ 1+ (ple)dgq, 1Ac,

(For definitions, see Glossary of Symbols). These
‘wave equations’ are derived without further assump-
tions from the differential equation for conservation
of mass for the solute in question

? Equations, tables and figures from Part 1 are refered to by ‘I’
followed by the number of the respective items.

205 +(5) o (5), -
e(at _~+ at :+U dz ,_0 (1.2)

and so remain valid even if other solutes are also
present.

4, ‘Coherence’

In Part I of this series, the wave Eqs. 1.4 and 1.6
had proved highly useful for deriving properties of
waves and gaining insight into cause and effect in
single-component non-linear chromatography. In
multicomponent systems the equations remain valid
but, unfortunately, do not by themselves provide a
sufficient description. The trouble is that the sorbent-
phase concentration g, of the solute in question now
depends not only on the concentration c¢; of that
solute in the moving phase, but also on those of all
other solutes:

q; = qc,...¢,) (I1.1)

Even if the concentrations of all solutes are given,
the derivative dg,/dc; in Eq. 1.4 is ill-defined and can
in principle assume any positive or negative value.
This is because the isotherm of solute i, described by
Eq. II.1, now is no longer a curve in two dimensions
(coordinates ¢g; and c;), but an n-dimensional hyper-
surface in the (n + 1)-dimensional space with coordi-
nates g,c,,...,c,. The slope of a tangent to that
hypersurface at a given point depends on the direc-
tion in which it is measured, that is, on the variations
of all moving-phase concentrations, not just on that
of solute [ alone. Thus, the wave equation 1.4 by
itself does not contain enough information. Even if
all concentrations c,....,c, are given, the wave
velocity v, of a solute i can have any value: it is not
a ‘point qu'antily.' Similarly, for shocks, even if the
moving-phase concentrations ¢, of the respective
solute are known on both sides of the shock, the
shock velocity v, cannot be calculated from Eq. 1.6
alone because the values of g, on both sides depend
on the concentrations of the other solutes also.

Of course, it is always possible to solve any given
mathematical problem of chromatography without
invoking wave theory, that is, by numerical integra-
tion of the differential mass-conservation equations
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1.2 of all solutes over distance and time (analytical
solutions exist only for very few, exceptionally
simple cases). However, in complex situations a very
large amount of computation is likely to be required,
especially if the differential equations turn out to be
stiff. Moreover, the results of any such brute-force
integration are valid only for the conditions that were
specified. Unless we are willing to invest in the
calculation and evaluation of an enormously large
number of cases, this approach — with the column a
‘black box’ — teaches us little about cause and effect
and does not lend itself to gaining much insight that
would allow us to state general rules and make
predictions without detailed calculations. For that,
we need a better conceptual understanding. A key
concept here is that of ‘coherence’ [2,22-24].

If we look again at the frontal analysis experiment
in Fig. 2, we can say that it really involves four
waves rather than only three: The composition
variation between the pure solvent or carrier gas
initially in the column and the entering mixture
containing all three solutes, although existing for
only one fleeting instant at start, also qualifies as a
wave by our definition because it is a variation of the
dependent variables, the concentrations. It could be
called ‘unstable’ because it cannot persist as a single
wave, but instability in phenomena involving fluid
flow has all kinds of connotations not intended here.
Therefore, a different terminology has been created:
In the language of coherence theory, the initial wave
is noncoherent and is resolved into a set of coherent
waves. The latter, by definition, travel without
further break-up; they may sharpen or spread, but
retain their integrity in all other respects — except
that interference with other waves or a change in
conditions may again produce a local and temporary
state of noncoherence, as will be seen later (see
Section 9).3

For frontal analysis and any other problems with a
column of uniform initial composition and constant
composition of the entering fluid (so-called Riemann
problems) the resolution into coherent waves may

¥ In the language of mathematics of non-linear waves, the coher-
ence principle can be formulated as follows: An arbitrary starting
variation, if embedded between sufficiently large regions of
constant state, is resolved into simple waves or shocks, between
which new regions of constant state arise [25].

appear trivial. Only a perfectionist might demand
proof that a particular wave or moving-phase com-
position {c,, ...,c,} has traveled to its current posi-
tion from the column inlet rather than having arisen
at the present moment from a shift of solute con-
centration profiles relative to one another. Indeed, the
early theoreticians of non-linear chromatography
(except Baylé and Klinkenberg [26]), preoccupied
with Riemann problems, took such eminently plaus-
ible behavior as self-evident, to the point that they
failed to realize that noncoherence is possible at all.
The coherence concept comes into its own when
conditions are more complex, in particular, if non-
coherence arises or persist over finite time and space
intervals. Examples are interferences occurring when
faster coherent waves generated later catch up with
slower ones generated earlier (e.g., in displacement
development), and gradual approach to coherence
from a gradual composition variation at the column
inlet (e.g., in gradient elution) or from a gradual
initial composition variation in a column (e.g., at
start of regeneration of an incompletely exhausted
adsorption column). Such matters will be taken up
later (see Sections 8 and 9). What can be said at the
present stage is:

- A noncoherence does not know or care how,
when, and where it came into being — at start and
column inlet, or later and farther downstream —
and whether it is sharp or diffuse; it is always
resolved into a set of coherent waves by the same
rules.

This rule is a key to understanding the response
behavior of even quite complex systems.

In general terms, the coherence concept resembles
that of equilibrium and steady state. Each is a state a
system strives to attain, and will approach arbitrarily
closely if not disturbed again. That state is equilib-
rium if the system is closed; it is a steady state if we
allow the system to be open, but impose fixed
boundaries and constant boundary values; it is a state
of coherence if we relax these latter two restrictions
also. Thus, coherence can be viewed as a general
concept of ‘stability’ that includes equilibrium and
steady state as special cases. In the real world,
coherence is only approached asymptotically, but so
are equilibrium and steady state. This does not
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impair the utility of the concepts. In fact, they are
most useful in situations far from the final, ‘stable’
state since they tell us in which direction the system
will move under complex, transient conditions. This
is true for coherence as much as for equilibrium and
steady state.

The notion of ‘stable’ modes other than equilib-
rium and steady state is, of course, an old one in
physics and mechanics. Examples that come to mind
are the harmonic vibrations of an oscillator or a
musical string and the flutter of an aircraft wing or a
flag in high wind. A perhaps closer analogy to
coherence is a behavior observed by the famous
Dutch physicist Christian Huygens (1629-1695). He
had mounted his collection of pendulum clocks on a
wall board and noticed a few days later that all their
pendulums were swinging in perfect synchronization
(see Fig. 4), and this although the clocks separately
had slightly different frequencies. They had adapted
to one another through vibrations transmitted by the
board to which they were fastened. Typically, the
‘stable’ states in all such mechanical systems are
characterized by eigenvalue solutions, as is coher-
ence. The world we live in is full of eigenvalues. It is
only in physical chemistry and chemical engineering
that our preoccupation with thermodynamics -

CHRISTIAAN HUYGENS 1629 - 1695

Fig. 4. Huygens’ clocks with pendulums swinging in synchroniza-
tion.

which really should be called thermostatics — has let
us neglect dynamics and be slow to recognize and
appreciate the fact that ‘stable’ states exist beyond
equilibrium and steady state.

A general proof for development toward coher-
ence, independent of the exact form of the differen-
tial equations of motion, is so far lacking — as, for
that matter, is a proof for development toward
equilibrium (the free-energy argument of thermo-
dynamics only replaces one unproved axiom by
another). Proofs for development toward coherence
in systems with hyperbolic differential equations
have been given [25,27], but the concept has shown
itself to be valid for some other types of systems as
well. What can be shown without mathematics is that
the principle is plausible: As mentioned above,
coherent behavior appears trivial if there is only a
single, instantaneous variation of the composition of
the injected fluid, so that all waves must have
originated from a single distance—time point (i.e.,
under Riemann-type conditions). It also appears
plausible that the same wave pattern should result if,
instead, the injection variation were extended over a
finite, but exceedingly short time interval (in the
language of mathematics, this is so if the problem is
‘well-posed’). But the time over which the injection
is varied is a relative quantity, and would constitute a
large fraction of the total time in a very much shorter
experiment with a very much shorter column. That
latter experiment can, in turn, be viewed as a scale-
down of one with a long column and an injection
variation that extends over a significant length of
time [28]. This is illustrated in Fig. 5, which shows
trajectories of compositions and shocks in the dis-
tance—time plane. Thus, unless the minute change in
conditions from discontinuous to very fast but con-
tinuous injection variation is to produce significant
and long-lasting effects, development toward coher-
ence must be expected. This is a plausible argument
rather than a proof, for nature is full of systems that
are not well-posed (see the ‘butterfly effect’ of
meteorology, in which a butterfly’s bat of a wing
could conceivably set a chain of events in motion
that much later culminates in a typhoon thousands of
miles away). However, there is absolutely no reason
to suspect such behavior in the types of systems of
interest here.

Coherence is a very simple concept, as simple as
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distance

'« time

initial
variation

distance

time

Fig. 5. Distance~time diagrams illustrating attainment of coherence under non-Riemann conditions, granted well-posed behavior. Trivariant
noncoherence producing one nonsharpening wave (bundle of trajectories of given compositions {c,. ..., c,}, shown as thin lines within
shaded wave) and two shocks (trajectories shown as heavy lines). Left: coherent pattern from very short continuous composition variation;
right: enlargement of small area near origin in left diagram, with coherent pattern arising from composition variation that extends over

significant fraction of total time. (From Helfferich [28].)

equilibrium or steady state. We all have long become
used to applying the latter two without asking for
proof that our systems will settle down to these states
if not further disturbed. If we accept coherence on
these same terms, as a state a dynamic system will
strive to attain, all we have to realize is that in wave
propagation an arbitrary composition variation
(wave) usually is not in such a state, and therefore
breaks up into a set of several waves that are and that
separate from one another as they travel. Frontal
analysis is the simplest manifestation of such be-
havior, but the principle is more general in that any
noncoherent wave, whether sharp or diffuse and
regardless of its origin and position, breaks up in this
same manner. The greatest hurdle to an understand-
ing of coherence is to accept the simplicity of the
idea, to overcome the notion that great complexities
must lurk behind. The greatest difficulty in explain-
ing coherence is, the more said in explanation, the
more that notion is reinforced. As Maurice Dirac
once said, ““you don’t learn a theory, you get used to
it” — as we all got used to the ideas of equilibrium
and steady state, by applying them with success.

It is true, however, that application of the coher-
ence concept requires thinking along lines the aver-

age chromatographer is not used to. Conventional
thinking has mostly been in terms of mathematically
deriving and understanding effluent composition
histories, given the initial and entering compositions.
In contrast, coherence theory starts with examining
what will develop from local and momentary con-
centrations and their gradients, regardless of where
and when they exist and how they arose. Coherence,
or the lack of it, is a property of a wave, not of an
entire column (although the latter can be called
coherent if all the waves it contains are coherent).
The conventional approach is eminently satisfactory
as long as the operating conditions are simple, as in
traditional elution development and frontal analysis.
It does run into difficulties, however, when the
column initially contains composition gradients or
the composition of the entering fluid is varied
gradually or repeatedly, as is often the case in
modern preparative chromatography. Imagine, for
example, a column as in Fig. 2 run to breakthrough
of butane (solute 3) and now to be stripped while
still containing the fronts of toluene and CO, (solutes
2 and 1). Or consider the problem of predicting the
required column length for resolution of a multi-
component mixture of solutes by displacement de-
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velopment, where the wave sets produced by intro-
duction of the mixture and, later, of the development
agent interfere with one another in the column
(transient profiles in displacement development will
be examined in more detail in Section 9). Here, a
knowledge of what develops locally makes it pos-
sible to unravel the resulting behavior with relative
ease. For any given type of sorption isotherm, sets of
rules can be deduced for what may and may not
happen in the column, as will be shown in Parts II1
and IV of this series. Thus, if the initial and entry
conditions are simple, the concept has little to offer,
but it comes into its own in more complex situations.
Coherence theory and its tools will never replace
trial or numerical calculation, but where the variety
of potential operating schemes and conditions is
overwhelming, it can help to decide what to try or to
calculate, and can provide insight from which in-
novative ideas might spring.

To adjust to the different way of thinking, al-
though not at all difficult, requires an effort and is
harder for the expert than for the novice. No
argument can persuade the practical chromatographer
that it will be worth his time. Only his successes
with the approach can show him that it was.

5. Coherence conditions

A sufficient and necessary condition for a wave to
be coherent is readily deduced. A multicomponent
wave can be viewed as a composite of single-com-
ponent waves, one for each solute that is present. For
example, the front of solute 1 in the frontal analysis
experiment of Fig. 2 involves concentration varia-
tions of all three solutes 1, 2, and 3 and so is a ‘1
wave’ as well as a ‘2 wave’ and a ‘3 wave’. The
wave equation L4 for a concentration within a
diffuse wave, or Eq. 1.6 for the concentration step of
a shock, is valid for each solute that is present. If the
solutes had different wave or shock velocities, their
concentration variations would separate from one
another, that is, the wave would break up into several
waves and thus be noncoherent by definition. Ac-
cordingly, for a wave to be coherent, the wave
velocities must be the same for all solutes at a given
point in space and time:

- Coherence requires all components that are
locally present to have the same wave or shock
velocity at any point in space and time within the
wave.

[A more general definition requires all represented
dependent variables, including e.g. temperature and
pressure, to have the same wave velocity.] Reference
to the wave equations 1.4 and 1.6 shows the corre-
sponding conditions for coherence to be

for diffuse waves: dg,/dc, =A foralli (11.2)

for shocks: Ag;/Ac,=A foralli (IL.3)

where A or A has the same value for all solutes i.
The conditions are known as the differential coher-
ence condition and integral coherence condition,
respectively. (In mathematics of waves, the con-
ditions are called the fundamental differential equa-
tion of Riemann’s problem and the compatibility
condition, respectively.) [Regarding the nature of the
total differential in condition I1.2, see Appendix A]

[An interesting corollary of the differential coher-
ence condition II.2 is that concentrations c,...,c,
that coexist at the same point in space and time
within a coherent wave will necessarily remain in
each other’s company because they travel at the
same velocity. Accordingly, coherence can also be
defined as the conservation of complete sets of
values of dependent variables (here, the concen-
trations of the solutes). This alternative definition
makes it most clearly apparent that coherence in-
cludes equilibrium and steady state as special cases:
In the latter two, the values of the dependent
variables do not change with time, so that the
condition of conservation of sets is automatically
obeyed. In comparison, coherence is seen to be the
more general concept because it allows the sets of
variables to move in space as time progresses.]

In a case as simple as frontal analysis or, for that
matter, in any Riemann problem, the coherence
conditions may appear trivial. Yet, they are the key to
efficient mathematics. We had encountered the fun-
damental difficulty that, in principle, the wave
equation 1.4 allows a given concentration c¢; at given
composition {c,, ...,c,} to have any arbitrary posi-
tive or negative velocity. Now, the differential



18 F.G. Helfferich, R.D. Whitley | J. Chromatogr. A 734 (1996) 7-47

coherence condition I1.2 helps by imposing itself as a
constraint. The result is that the wave velocity, which
in a coherent wave is common to all solutes accord-
ing to condition II.2 or II.3, can only assume a few
distinct values. Mathematically, the velocity now is
given by eigenvalues. These are the natural velocities
at which, at given moving-phase flow-rate v°, the
composition can travel if within a coherent wave:

0
[%

YT 1+ (ploA

(11.4)

They will here be called eigenvelocities. In a system
with variance n, any composition {c,,...,c,} has n
such eigenvelocities v,.

Perhaps more importantly, to each of these eigen-
values belongs an eigenvector {dc,,...,dc,}. The
eigenvectors indicate how the concentrations
¢y, ...,C, may vary relative to one another across a
coherent wave. An arbitrary composition variation is
unlikely to be in the direction of an eigenvector, and
cannot constitute a coherent wave. Only certain
distinct types of composition variations can occur
across coherent waves. Since all composition varia-
tions in the column tend to sort themselves out into
coherent waves, a knowledge of the types of varia-
tions compatible with coherence is an invaluable aid
in predicting column behavior even under complex
operating conditions. How this can be done will be
discussed in the next section.

The mathematically disinclined reader should not
be discouraged by the references to eigenvalues and
eigenvectors and the use of the term eigenvelocities.
The essential concepts can be grasped without
background in higher mathematics. At this point it
will suffice to accept three facts. The first is that
coherent behavior is a state the system is comfortable
with and strives to attain or at least approach from
any arbitrary initial state; this is true for coherent
waves in chromatography as much as for Huygens’
pendulums, the harmonic vibration of a musical
string, or the flutter of an aircraft wing. The second
fact is that, in chromatography, coherence implies
equal local wave or shock velocities of all repre-
sented components. The third fact is that coherence
is compatible with only certain distinct composition
variations (namely, those characterized by the eigen-
vectors). For the interested reader, Appendix A

provides an outline of the general mathematical
formulation of the eigenvalue problem.

6. Composition paths and path grids

The obvious objective of multicomponent theory
is to predict the behavior of chromatographic col-
umns under specified initial and entry conditions. In
the context of coherence theory, the first key tool for
this purpose is the so-called composition path grid.
The present section explains the nature of such grids.
The application to the prediction of response be-
havior will be shown in the next three sections. The
presentation here is based on the methods set forth in
the book Multicomponent Chromatography [2], to
which the reader is referred for details (see also a
more readable and practice-oriented survey [29]).
However, the book mainly addresses systems with
stoichiometric ion exchange rather than non-stoichio-
metric adsorption. While the two phenomena are
mathematically equivalent and the methods em-
ployed are substantially the same, there are differ-
ences in physical interpretation and graphical repre-
sentation (for adsorption systems, see also work by
Gliickauf [30,31], Rhee [32,33], and Guiochon
[14,34] and their co-workers).

Composition variations that are compatible with
the differential coherence condition IL2 can be
mapped as curves in the composition space, that is, a
space with the concentrations c; as coordinates.
[Stated in more general mathematical terms, varia-
tions compatible with coherence can be mapped in
the hodograph space, that is, the space with the
dependent variables as coordinates.] The differential
coherence condition is obeyed along these so-called
composition paths (characteristics in the hodograph
space), and only along them. Any composition
variation that cuts across the grain of these paths is
noncoherent and will be resolved into coherent
variations that follow the paths. One might say, the
paths are the ‘grooves’ into which the system wants
to settle.

It is important to note:

- The composition path grid is uniquely given by
the equilibrium equations and the values of their
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coefficients, and is independent of the initial and
entry conditions.

This makes it possible to construct the path grid for a
system with given sorption equilibrium properties
once and for all and then use it to predict response
behavior under any initial and entry conditions.
Establishing response behavior with use of the path
grid is much like plotting the best route for a car trip
on a road map.

The path grid of a two-component Langmuir
system is shown in Fig. 6. The coordinates are the
moving-phase concentrations ¢, and ¢, of the two
solutes. (This is a practical choice; stationary-phase
concentrations g, and g, could be taken as well.) In
accordance with the variance 2 of the system there
are two families of paths, shown as solid and dashed
lines. The entire composition plane is covered by an
infinite number of paths of both families, of which
only some at regular intervals are shown. Each
composition point is at an intersection of two paths,
one from each family. At each point, the solid line
corresponds to the path with the lower eigenvelocity;
the dashed line, to that with the higher eigenvelocity.
For short, the paths are called ‘slow’ and ‘fast.’

"slow" paths
"fast" paths — —

7/ X

N
e

conc. of solute 1, c1
o
——

0 1.0 2.0
conc. of solute 2, c:

Fig. 6. Composition path grid of typical two-component sorption
system, calculated with @, =6.0, a,=3.0 (both in cm'/g),
b, = 1.0, b, = 0.5 (both in cm"/mmol) in Langmuir equation g, =
ae /(1 + S,b,c,). Arrowheads indicate direction in which eigen-
velocity increases along respective path, W=watershed point.

Along both the ‘slow’ and ‘fast’ paths the eigen-
velocity increases in the direction in which the
concentration ¢, of the more strongly adsorbed
solute increases; in Fig. 6 this direction is indicated
by arrowheads along the paths. (Note that solutes are
numbered 1, 2,... in the sequence of decreasing
affinity for the sorbent.) The axes themselves are
composition paths: The ¢, axis is a ‘fast’ path, and
the ¢, axis is divided by the ‘watershed point’ W
into a ‘fast’ and a ‘slow’ path; paths into the interior
are ‘slow’ if starting from an axis that is a ‘fast’
path, and are ‘fast’ if starting from one that is a
‘slow’ path. This makes any point on an axis also an
intersection of a ‘fast’ and a ‘slow’ path.

In a system with Langmuir adsorption isotherms
(or constant separation factors in ion exchange) the
paths are straight lines. This is not in general true for
other types of equilibrium isotherms.

Regardless of the type of isotherm, each additional
component adds a dimension to the composition
space and a family of paths. For instance, the
composition space of a four-component, isothermal
adsorption system is four-dimensional, with coordi-
nates c,, ¢,, ¢;, and c,, and is filled with four
families of paths; each point in the composition
space is at an intersection of four paths, one from
each family.

[In Langmuir systems with three or more solutes,
paths of any two families lie on common (planar)
surfaces in the composition space [35]. This makes it
possible to travel on a circular route along paths of
only two families: first on a path of family (), then
on one of family (k), then on another one of family
(7)., and back to the starting point on another one of
family (k) (see Fig. 7, left). The common planes of
(j) and (k) paths are intersected by paths of all other
families. Grids with these properties are ‘ortho-
gonalizable’ [36]. Non-Langmuir grids are not neces-
sarily orthogonalizable. Instead, a route alternating
between paths of families (j) and (k) might lead the
traveler to a point from which he would have to take
paths of other families to get back to his starting
point, as though he had descended or ascended to a
different floor on a spiral staircase (see Fig. 7, right).
The problem of a finding a sufficient or necessary
condition a multicomponent isotherm must obey to
form an orthogonalizable grid has not yet been
solved. However, numerical examination of a num-
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orthogonalizable C3

C1

C2

non-orthogonalizable C3

Fig. 7. Circular route along composition paths in trivariant non-Riemann systems. Left: orthogonalizable grid, route remains on common
surface (shaded) of intersecting ‘slow’ and ‘fast’ paths; right: non-orthogonalizable grid, no common surface exists, paths of all three

families needed for return to starting point.

ber of non-Langmuir grids has shown their devia-
tions from orthogonalizability to be quite small, if at
all real [37].

In principle, the path grid of any system can be
constructed step by step as follows [16]. First, the
eigenvalue problem is solved at a selected starting
point. Then a small distance in the direction of one
eigenvector is marked off and the eigenvalue prob-
lem is solved again at the new composition point.
This procedure is repeated over and over again,
always with the eigenvector of the same family, to
trace a curve which at each of its points is in the
direction of that eigenvector. After construction of
the first path is complete, the entire procedure is
repeated for other paths of the same family (same
eigenvector) and for paths of all other families (other
eigenvectors). A computer program for tracing paths
in this fashion has recently been described [38].

Obviously, such step-by-step procedure requires a
lot of calculation. However, the topology and general
structure of the path grid depend only on the form of
the equilibrium equations, not on the values of the
coefficients, and with their knowledge an approxi-
mate grid can usually be sketched in after calculation
of only a few characteristic points or curves (singular

points, loci of selectivity reversal, etc.). For example,
the grid of a two-component Langmuir system as in
Fig. 6 can be constructed from the solutions of only
two simple algebraic equations, as shown in an
appendix (see Appendix C). Other examples will be
seen in Parts III and IV of this series. An even
greater simplification that makes the construction of
the path grid superfluous can be achieved in ad-
sorption systems with Langmuir isotherms and ion-
exchange systems with constant separation factors by
use of a mathematical transformation, as will be
shown in Part III.

Many multicomponent adsorption systems that do
not obey the Langmuir equation nevertheless are
‘Langmuir-like’ in that their equilibria are competi-
tive and without selectivity reversals. In entirely
competitive equilibria, an increase in the concen-
tration ¢; of any solute j decreases the distribution
coefficients gq,/c; of all solutes. The respective
geometrical properties of the path grid allow a large
number of rules for coherent waves in such systems
to be derived, as will be shown in Part III. In that
context it will also become possible to attribute some
typical deviations from these rules to specific non-
Langmuir equilibrium properties.
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Of course, multidimensional grids can no longer
be shown in simple diagrams. However, this does not
impair their abstract mathematical use. Moreover, it
is not all that difficult to train one’s imagination to
handle more than three dimensions. For an excellent
introduction to such thinking, the interested reader is
referred to a nineteenth-century classic, Edwin Ab-
bott’s ““Flatland” [39], a delightful book that should
be required reading for any student of multivariant
problems.

7. Composition routes

A key step in the prediction of column responses
is the construction of composition routes. Composi-
tion paths, discussed in the previous section, are
curves in composition space along which the dif-
ferential coherence condition is obeyed; that is, they
map composition variations that may occur across
coherent waves. In contrast, a composition route
maps the actual composition variations encountered
in the column or effluent under specified conditions.
A route may or may not follow composition paths.
Where it does, and only where it does, the corre-
sponding wave is coherent. By convention, a route is
usually shown as a sequence of arrows, one for each
wave. A profile route indicates the sequence of
compositions found along the column from inlet to
outlet at fixed time, with the arrows pointing in the
direction of flow. A history route indicates the
sequence of compositions encountered at a fixed
position, usually the column outlet, as a function of
time; if arrows are used, they should logically point
in the direction of increasing time. In work to date,
profile routes are so much more common that a
‘route’ is taken to be a profile route unless spe-
cifically declared a history route.

As a simple example, Fig. 8, left, shows the profile
route for a two-component, Riemann-type case (uni-
form initial composition of the column and constant
composition of the entering fluid). The path grid is
that of Fig. 6, and both solutes 1 and 2 are present in
the entering fluid as well as initially in the column.
The route follows the ‘slow’ path from point F
(entering fluid) until, at point A, it switches to the
‘fast’ path that leads to point I (initial state of
column). The arrow F—A corresponds to the slower

of the two coherent response waves; the arrow A—lI,
to the faster one; and point A, to the plateau between
the two waves. Along the slow path through F and A
the eigenvelocity decreases from F to A (i.e., in the
direction of flow), so the wave F—A is a shock; the
distance—time diagram shows its trajectory as a
single, heavy line. In contrast, on the fast path
through A and I the eigenvelocity increases from A
to I, so that wave is nonsharpening and diffuse; in
the distance—time diagram it appears as a bundle of
divergent trajectories of compositions within the
wave (thin lines).

The route in Fig. 8 runs entirely along paths. A
more general rule can be stated:

+ The composition route of a Riemann problem
runs entirely along composition paths.

This is so because the waves of a Riemann problem
all originate from one single distance—time point
(z=0, t=0), namely, column inlet and start of
operation. All concentration and shock trajectories
radiate out from that point, and none intersect (see
Fig. 8, right). There is no wave interference, and
behavior is entirely coherent from the start (granted
the conditions of ideal chromatography). The be-
havior of non-Riemann systems is more complex, as
will be seen in Section 9.

Also, in a Riemann problem, at any moment a
wave that is faster must be downstream of one that is
slower; and it must have emerged from the column,
or reached a given location in the column, sooner
than one that is slower. This is because the faster
wave has traveled farther in the elapsed time, and
has reached the column exit or a given location
earlier. This allows the following general rules for
the sequence of path segments along the route to be
formulated:

- The profile route of a Riemann problem runs
from the composition point of the entering fluid
to the composition point of the initial state of the
column. On its way it takes the path of lowest
eigenvelocity from the starting point, switches
successively each time to a path of next higher
eigenvelocity, and reaches the end point on a path
of highest eigenvelocity.

- The history route of a Riemann problem
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Fig. 8. Development of a response pattern in a two-component system with uniform initial composition of column and constant composition
of entering fluid. Top left: composition route; top right: distance—time diagram; bottom: resulting column behavior; grid as in Fig. 6.

I=initial composition in column; F=composition of entering fluid.

coincides with the profile route, but runs from the
point of initial state to the point of entering fluid,
with path segments in opposite sequence.

To illustrate the application of the sequence rule,
Fig. 9 shows the profile route of a three-component
frontal analysis case (for distance-time diagram see
Fig. 3). The route runs along the ‘very slow’ path
from point F and eventually reaches point I on a

‘fast’ path. In between, it switches at point A from
the ‘very slow’ to a ‘slow’ path, and at point B from
the latter to the ‘fast’ path that leads to point I. The
arrows F—>A, A—B, and B—I correspond to the
three coherent response waves; the points A and B,
to the plateaus between them. Note that all waves are
shocks, that each involves concentration variations of
all solutes locally present, and that the concentration
of each solute increases across each wave in the
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"very slow" paths ------
"slow" paths
"fast’ paths — —

30 ¢

Fig. 9. Composition route of three-component frontal analysis
system of Fig. 2, shown on grid of common plane of ‘very slow’
and ‘fast’ paths through F (shaded) and of ‘slow’ and ‘fast’ paths
in ¢,, ¢, plane. I=initial composition in column, F =composition
of entering fluid.

direction of flow until it drops to zero at the
respective front. This is true in general for frontal
analysis with any number of solutes, granted sorption
equilibria are competitive and without selectivity
reversals. For comparison, Fig. 10 shows an ob-
served effluent concentration history of frontal analy-
sis [40] (note that the sequence of waves with
progressing time in a history is the opposite of that
with increasing distance in the corresponding pro-
file).

The ‘bunching up’ of molecules of a solute to
concentrations higher than in the entering fluid is
characteristic of frontal analysis with competitive
sorption equilibria. Wave theory makes it easy to
understand the physical cause of this effect. For
simplicity, consider the case of only two solutes. The
leading band contains only the solute of lower
affinity for the sorbent. As molecules of that solute
outrun those of the solute of higher affinity to form
the leading band, they cease to have competition by

as
CerCaz
s

o4

a2

) 20 s

0.0 (+]]

Fig. 10. Observed effluent composition histories of frontal analysis of 2-butanol (c,) and tert.-amyl alcohol (c,) on carbon. Plotted are
normalized effluent concentrations vs. dimensionless time; @=experimental points; solid and dashed curves are for different values of
mass-transfer coefficient in liquid phase. (From A.I. Liapis and DW.T. Rippin [40], reproduced with permission of Chem. Eng. Sci.).
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them for sorption sites. As a result, they are more
strongly sorbed in the leading band than behind it,
and therefore are more strongly retarded in the
leading band. (More precisely put, the lack of
competition in the leading band increases their
distribution coefficient ¢,/c;, and this reduces their

"slow" paths
"fast’ paths — —

particle velocity; see Eq. 1.5 of Part L.) This is what
causes the concentration to increase, just as traffic
will bunch up when cars ahead are forced to slow
down.

As a second example, Fig. 11 shows the behavior
upon elution of a column that had been uniformly

distance, z [cm]

time, t [min]
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Fig. 11. Elution from a uniformly loaded column: composition route (top left), distance—time diagram (top right), and successive

composition profiles (bottom). Common plane of ‘slow’ and ‘fast’ paths in route diagram is shaded; W=watershed point on that plane.
Conditions as in Figs. 2 and 9, except initial and entering compositions are interchanged. (Note inverted time and distance scales of

composition profile diagram.)
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saturated with the three-component mixture used in
the frontal analysis experiment just described: The
conditions are the same as stated for Fig. 2, except
the compositions of the initial and entering fluids are
interchanged. As in the frontal analysis example,
three waves are generated but, given competitive
sorption equilibrium, all now are nonsharpening. As
always, the route takes paths in the sequence of
increasing velocity, but since its end points are
interchanged it runs a different course. Another
difference between the two cases is that the solute
concentrations are lower in the plateaus than initial-
ly: no ‘bunching up’ as in frontal analysis! Here, as
molecules of the high-affinity solute are outrun by
the others and left behind in a band of their own,
they no longer face competition by the other, and so
are more strongly sorbed and retarded. Because of
this slowing-down the stragglers become spread out
more thinly.

For systems with variances greater than 3, we run
out of dimensions to plot path grids and routes on a
sheet of paper, except if the absence of some solutes
from portions of the pattern allows us to work with
projections onto sub-spaces with fewer dimensions
(e.g., see the constructions for displacement develop-
ment in Section 9 and other examples in Ref. [2]).
This largely deprives us of the convenience of
graphical constructions, but does not impair the
abstract mathematical use of path grids.

In all Riemann systems with two components, and
in some with n components of which several are
absent initially or from the entering fluid, the route
can be traced immediately. This includes frontal
analysis. In more complex Riemann systems the
paths between the ‘slowest” and ‘fastest’ may have to
be found by trial and error. Route construction for
non-Riemann systems requires an understanding of
wave interference and will be taken up in the next
two sections.

[The discussion above will suffice for a qualitative
understanding of the significance of composition
routes. For quantitative constructions, one fundamen-
tal difficulty remains to be addressed in the general
case with curved composition paths, even under
Riemann-type conditions. Fig. 12 shows schematical-
ly a curved composition path — by definition a curve
along which the differential coherence condition I1.2
is met — and the locus of points such as B, B,, and

“differential” path \ A
- -
] - / B4
- 2
= ”
-6 / =z C1
0 Bs
b V4
o / C2
1] ~ - locus of points meeting
g -~ integral coherence condition
(2] with point A
with point B1

concentration of solute 2

Fig. 12. Non-obeyance of integral coherence condition by pairs of
points on curved differential composition path. Locus of points
meeting integral coherence condition with A is curve through B,
B,. B, and deviates from differential path through A; locus of
points meeting that condition with B is curve through C,. C, and
deviates farther (schematic).

B, which meet the integral coherence condition 11.3
with a point A on the path. These points are not on
the path through A! [41-43]. At first glance one
might think that an ‘integral’ composition path grid
with curves meeting condition 1.3 could be con-
structed, but this is not true either: While that
condition is met for pairs such as AB, AB,, and
AB,, it is not met for pairs B B,, B B,, B,B,, etc.
To illustrate this, Fig. 12 also shows the locus of
points such as C, and C, that meet the condition
with point B,. Accordingly, any ‘integral’ path
constructed as locus of points obeying condition 11.3
with a starting composition A is valid only for
shocks with that particular composition A on their
upstream or downstream side. A procedure common-
ly employed is (1) to construct an approximate route
along (differential) composition paths, (2) check
which waves are shocks, and (3) correct the route by
use of the algebraic condition 1.3 for such shocks
[44]. A simpler procedure can be used if all waves
are shocks, as in frontal analysis, for example. Each
wave then obeys condition 11.3, and the compositions
of the plateaus in the response pattern can be
obtained by the solution of the n respective simulta-
neous algebraic equations and the constraint of
having the shocks in the sequence of increasing
velocity. To avoid this distracting difficulty, systems
with straight-line paths were chosen here for the
examples: Any pair of points on a straight-line path



26 F.G. Helfferich, R.D. Whitley / J. Chromatogr. A 734 (1996) 7-47

also automatically obeys the integral coherence
condition, so that the entire route of a Riemann
problem runs along (differential) paths even if some
or all of the waves are shocks.]

8. Wave interference

Without asking as yet when such a phenomenon
will occur, let us examine now what will happen if a
faster wave finds itself upstream of a slower one.
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2.0 / “fast" paths — —
- route before interference ——»
o )( after interference — —

- /7 \
- .
2
=
%
5 10
o
o
c
o
(3]
0
0 1.0 2.0

conc. of solute 2, c2

:

fast shock

[v9]

slow shock

at start

~——

>

(@)

-———

at interference

Fig. 13 shows the profile route and distance—time
diagram of such a situation, with both waves being
shocks. As time passes, the ‘fast’” shock A—B
catches up with the ‘slow’ shock B—C. At the
moment this happens, the two shocks merge into a
single concentration discontinuity A—C. The com-
position variation from A to C across this dis-
continuity is not along a path, and thus is noncoher-
ent. It is immediately resolved into two new coherent
waves A—D and D—C, in exactly the same way as
it would be if it had been generated by introduction

distance, z [cm]

time, t [min]

|
|

after interference

slow shock
fast shock

Fig. 13. Interference of two shocks: composition routes before and after interference (top left), distance-time diagram (top right), and

resulting column behavior (bottom). t"=time of interference.
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of fluid A into a column initially containing fluid C.
After resolution, a ‘slow’ wave A—D is upstream of
a ‘fast’” wave D—C, as seen in the distance—time
diagram. Both new waves are shocks, and a new
plateau D grows between them as they pull apart.
This example illustrates how the path grid can be
used to identify the results of wave interference
without further calculation.

The route construction in Fig. 13 yields quantita-
tive information on the composition variations across
the two new waves and on the composition of the
new plateau between them, but not on the point in
space and time at which the interference occurs. The

' 1, "
\/\ /'slow paths
./ "fast" paths — —
route before interference ——>»

/ after interference — —>»
transient routes.\----»

conc. of solute 1, c1

0 1.0 2.0

fast shock
slow non-
sharpening
wave

easiest way to identify that point is with the dis-
tance—time diagram. Given the initial positions z,
and z, of the shocks A—>B and B—C, respectively,
at time ¢° and their velocities, their trajectories in the
distance—time field can be plotted (the shock ve-
locity v, equals the trajectory slope dz/dt in the z,
plane). The intersection of the trajectories, at z and
t", is the point at which the shocks interfere.
Interference of a shock with a diffuse wave is
more complex. An example is shown in Fig. 14.
Interference occurs along a distance—time curve
which corresponds to a shock ‘cutting through’ a
diffuse wave of the other family (a ‘fast” shock

distance, z [cm]

time, t [min]

slow non-
sharpening
wave

fast shock

Fig. 14. Interference of ‘fast’” shock with ‘slow’ nonsharpening wave: composition profile routes at various times (top left), distance-time
diagram (top right), and resulting column behavior (bottom) in two-component system with equilibrium as in Fig. 6. Included are transient

routes at times ¢,, £,, and ¢, during interference.
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through a ‘slow’ diffuse wave in the example chosen
here). At any moment during interference, the shock
meets the coherence condition II.3 although the
compositions on its upstream and downstream sides
change continuously. During interference, the shock
has a portion of the original ‘slow’ diffuse wave on
one side, a portion of the new on the other. As time
progresses, the new portion increases at the expense
of the old one until the latter has disappeared entirely
and interference is complete. In the composition
space, the route of the shock shifts gradually and
continuously from A—B to D—C. As in interference
of two shocks, use of the path grid immediately
yields the new coherent route A—>D—C from the old
route A—B—C. Quantitative identification of the
curve along which interference occurs, and thus of
the starting points of the new composition and shock
trajectories, requires a relatively simple integration
along that curve [45].

Interference of two diffuse waves, shown in Fig.
15, is still more complex. Here, a finite distance—
time region of noncoherence is generated within
which the route changes continuously and does not
follow any path, and which therefore contains no
composition trajectories. Again, the new route
A—D—C can be obtained from the original route
A—B—C with use of only the path grid. That is, the
composition variations across the new waves and the
composition of the plateau in between can be
predicted from the grid alone. However, quantitative
calculation of the behavior within the region of
noncoherence and of the exact locations of the
borders of the latter, and thus of the starting points of
the new coherent composition trajectories, requires a
more lengthy numerical integration over two vari-
ables: distance and time.

At least for Langmuir and Langmuir-like systems,
an important general rule can be stated for all
interferences of waves:

- The sharpening behavior of waves is preserved
upon interference.

That is, both the ‘slow’ and the ‘fast’ wave remain
self-sharpening or nonsharpening, as the case may
be. This is true although they change their routes and
their positions relative to one another.

The reader interested in further detail and quantita-

tive treatment is referred to Section 3.VI and Appen-
dix II of Ref. [2] and to work of Rhee et al. [32,33].

[In systems with variance 3 or higher, interference
of two waves of different families produces two new
waves of the same families as the original ones if the
path grid is ‘orthogonalizable’ (see parenthetical
comment in Section 6). In the composition space, the
entire interference then remains confined to a com-
mon surface of mutually intersecting paths of these
two families (see Fig. 7, left). If the grid is not
orthogonalizable, waves of other families are also
produced.]

9. Non-Riemann systems

In a non-Riemann system the route is in general
no longer unique, but varies with time or position in
the column. Moreover, profile and history routes no
longer necessarily coincide with one another. Never-
theless, route construction provides an excellent key
to conceptual understanding of the complexities of
response behavior under other than Riemann-type
conditions and a powerful tool for its quantitative
prediction.

As a first example, Fig. 16 shows successive
profile routes and concentration—distance—time be-
havior for elution of a pulse of a two-component
mixture under conditions of concentration and vol-
ume overload [30,32,34,46—50]. Until waves begin
to interfere, this case can be viewed as a combination
of frontal analysis and elution from a saturated
column: The start of mixture injection generates a
frontal analysis pattern, the switch to injection of
eluting solvent or carrier gas generates a pattern as in
elution from a uniformly saturated column. Intro-
duction of the mixture of solutes 1 and 2 (com-
position F), at 1 = 0, into the column free of sorbates
(composition I) produces two shocks F—>A and A—I
and a plateau of pure solute 2 (composition A)
growing in between. Start of elution with pure
solvent or carrier gas (composition I), at time t’,
generates two nonsharpening waves I-B and B—F
with a platcau B of pure solute 1 growing in
between. As the distance—time diagram shows, the
first interference to occur is that of the ‘fast” wave
B—F generated at ¢ = ¢’ with the ‘slow’ shock F—A
generated at ¢ = 0. It produces two new waves B—I
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Fig. 15. Interference of two nonsharpening waves: composition profile routes at various times (top left), distance— time diagram (top right),
and resulting column behavior (bottom) in two-component system with equilibrium as in Fig. 6. Included are transient routes at times ¢, t,,

and t, during interference.

(‘slow’ shock) and I—A (‘fast’ and nonsharpening
wave) and effects resolution into two pure-com-
ponent pulses with shock fronts and nonsharpening
rears. Involving a diffuse wave, this interference
requires a finite time, during which the route of the
shock gradually shifts from F—A toward B—I. It
may or may not be complete by the time the leading
edge of the new ‘fast’ wave I A catches up with the

old ‘slow” shock A—I. In the case shown in Fig. 16
it is (see distance—time diagram). Accordingly, the
pulse of component 2 still has its flat top at the
instant ¢ of resolution, and the route at that time is
I-B—>I—>A—l. As time progresses, both pulses
keep flattening out, even granted the assumptions of
ideal chromatography (see the discussion of single-
component overload elution in Section 12 of Part I
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Fig. 16. Elution under overload conditions: profile routes (top left), distance—time diagram (top right), and successive composition profiles
(bottom) for elution of two-component mixture F with solvent or carrier gas. Transient routes during interference shown at times ¢, and 1,;
¢"=resolution time. Parameter values @, = 6.0, a, = 3.0 (both in cm’/g), b, = 1.0, b, =0.5 (both in cm’/mmol) in Langmuir equation
g, =ac/(1+ 2 bic,); v° = 3.1831 cm/min; ple = 2.5 g/cm’; mixture ¢, = 0.3 M, ¢, = 0.5 M injected during 0 < = 2.0 min; 7’ = time of
resolution.

[1]; in terms of physics, the reason is that the the shock, so that the velocity of the shock front of a
velocity of a shock is an average of the eigen- pulse necessarily is lower than the eigenvelocity of
velocities of the concentrations on the two sides of the pulse maximum).
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At a smaller separation factor «,,=a,/a, or
higher solute concentrations, the flat top A of
component 2 is apt to disappear before resolution.
The route at the moment ¢~ of resolution would then
be I-B—I->X—>I, where X is a point between A
and I on the ¢, axis.

This example demonstrates the ease with which
the path grid and distance—time diagram allow the
evolution of the pattern and the newly arising
compositions to be predicted, given the compositions
of the column at start and of the entering streams.
How this can be done in a quantitative manner will
be shown in the next section.

For comparison, Fig. 17 shows an experimentally
observed effluent composition history of an elution
under overload conditions and with a column too
short for resolution [49].

The pulses in Figs. 16 and 17 have sharp fronts
and diffuse rears. Such behavior is found in systems
with competitive sorption equilibria, including Lang-
muir and Langmuir-like systems, and is caused by
negative isotherm curvatures (see Section 12 in Part I
for effect of isotherm curvature on peak shape).
Other types of isotherms give different peak shapes.
For example, the sorption isotherms of electrolytes
on ion exchangers in so-called ion exclusion pro-
cesses have opposite curvature [51,52] and produce
pulses with diffuse fronts and sharp rears. This is
true in multicomponent as well as single-component
systems.

The next examples extend the construction to
displacement development of a mixture F1 of solutes
2 and 3 by a development agent F2 consisting of
solute 1 of higher affinity. The column is assumed to
be long enough for attainment of the final pattern. In
displacement development, discussed in Section 13
of Part I, a large amount of mixture is introduced
into a solute-free column and is then displaced with
an agent of higher affinity for the sorbent. If totally
effective, displacement eventually results in a pattern
with pure-component bands of uniform concentra-
tions, in the sequence of affinities, separated by
shocks, and all advancing at the same velocity.
Under real conditions, some overlap remains because
the shock layers have a finite, though small thick-
ness. Granted the assumptions of ideal chromatog-
raphy, the shocks are concentration discontinuities

and resolution thus becomes complete. Reference to
‘complete’ resolution in the following is to be
understood in this way.

Fig. 18 shows a classic case of total displacement.
Introduction of the mixture F1 generates the profile
route F1>A-—I with two shocks F1—A (‘slow’) and
A—l (‘fast’) and a plateau A of pure solute 3
growing in between. This is a frontal analysis
pattern. Subsequent introduction of the development
agent F2, started after 2 min, generates three
new waves and lets the route become
F2—-D—->B—>F15A—I, with D being a plateau of
pure solute 2, and B a mixture of solutes 2 and 3
different from Fl. The new, upstream portion
F2—-D—B—FI is as would develop under Riemann
conditions with F2 entering a column initially con-
taining F1 uniformly over its entire length. In Fig. 18
the concentration of the development agent is high
enough for all three waves in that portion of the
pattern to be shocks. In time, the fastest of these
shocks, B—F1, catches up with the ‘slow’ shock
F1—>A generated earlier. Wave interference at ¢ =1
produces two new coherent shocks B—C (‘slow’)
and C—>A (‘fast’). The ‘slow’ shock is now up-
stream of the ‘fast’ one. The new plateau C that
grows between the two contains pure solute 3 at
higher concentration than in A. Since the eigen-
velocity decreases monotonically from D to C and
from C to I, the ‘slow’ shocks D—B and B—C
eventually merge into a single shock D—C, and so
do the ‘fast’ shocks C—A and A—I into a single
shock C—1. Only the distance—time diagram can tell
which merger occurs first. After both mergers, the
new and final route is F2—-D—C—l. All its waves
are shocks, and with disappearance of the plateau B
at time ¢ the separation of solutes 2 and 3 is
complete. Note that solute 1 is present only upstream
of the slowest wave F2—D, a shock; this allows the
entire route construction to be conducted in the c,, ¢,
plane once the position of point D has been estab-
lished.

For comparison, Fig. 19 shows the observed
effluent history of a separation achieved under
conditions of total displacement, as in Fig. 18 [53].

In Fig. 20 the mixture F1 is the same as in Fig. 18,
but the concentration F2 of the development agent is
chosen lower so that the new ‘fast’ wave B—F1 is
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CONCENTRATION (mg/ml)

nonsharpening rather than a shock. Interference of
the ‘fast’ nonsharpening wave B—F1 with the ‘slow’
shock F1—>A moves the route of the latter gradually
over toward B—C. This interference may or may not
be complete before the plateau A disappears. If it is,
the route at the time of its completion becomes
F2-D->B—C—A-I. If it is not, the route at that
time becomes F2—-D—B—>C—X—I, with X being a

[ ] 9
TIME (MIN)

Fig. 17. Observed effluent composition history of elution of a two-component mixture under conditions of concentration and volume
overload in column intentionally selected too short for complete resolution. Separation of 2-phenyl-ethanol ((J) from 3-phenyl-propanol (O)
on ODS silica; curves calculated with model including mass-transfer resistance (from Katti et al., [49] reproduced with permission of AIChE
J).

point on the ¢, axis between C and A. The segment
C—A>I (or C»X-I) is a pulse of pure component
2 with shock front and nonsharpening rear. This
pulse attenuates and eventually disappears complete-
ly, leaving only a shock C—I. That happens because
the shock velocity of its front is always lower than
the eigenvelocity of the maximum concentration,
even when the latter approaches C. As in the
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Fig. 18. Complete displacement development: profile routes (top left), distance—time diagram (top right), and successive composition
profiles (bottom) for displacement of two-component mixture of solutes 2 and 3 (F1) by solute 1 (F2) at high concentration. Routes shown
on path grids of ¢, ¢, and c,, ¢, planes (latter shaded). :" =resolution time. Parameter values a, =120, a, =6.0, a, = 3.0 (all in cm’/g),

b, =20, b,=10, b,=0.5 (all in cm’/mmol) in Langmuir equation q;,=ac/(1+ >

bic,); v'=3.1831 cm/min; p/e =25 g/em’;

mixture ¢, = 1.0 M, ¢, = 1.0 M injected during 0 <7 =<2.0 min.; developer ¢, =4.0 M injected during +=2 min.

previous example, the shocks D—B and B—C merge
at some time, completing resolution. This may
happen before or after the pulse C—oA—I (or
C—X-1) has degenerated into the shock C—l. In
either case, the final route is F2—D-—-C-lI, all
waves being shocks, as in the previous case. Note,

however, that resolution may well be complete
earlier, and if so, that the pattern at that time is more
favorable than the final one because component 2
then is still concentrated in a narrower band
(nonuniform concentration with maximum, corre-
sponding to point X, at its tail end). Such a situation
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Fig. 19. Observed effluent composition history of protein separation (a-chymotrypsinogen A, cytochrome c, two impurities) on strong-acid
cation exchanger by development with dextran polyelectrolyte displacer at concentration high enough for total displacement (from

Jayaraman et al., [S3] reproduced with permission of J. Chromatogr.).
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30 ¢

Fig. 20. Displacement development with resolution before attain-
ment of final pattern: profile routes for displacement as in Fig. 18
but with lower concentration of developer, ¢, =2.5 M. Routes
shown on paths grids of c,, ¢, and c,, ¢, planes (latter shaded).

has been discussed in more detail by Gadam et al.
[54].

For comparison, Fig. 21 shows the observed and
simulated effluent history of a separation achieved
under conditions corresponding to those in Fig. 20.
(The simulation is based on numerical integration of
the differential mass-conservation equations without
recourse to wave theory.)

Figs. 22 and 23 illustrate the chromatographic
response with the same mixture F1, but with de-
veloper concentrations too low to achieve the normal
displacement pattern. In Fig. 22 the developer con-
centration is such that the ‘very slow’ path origina-
ting from F1 leads to a point D below the so-called
watershed point W, on the ¢, axis. Development
now produces a route F2-D—B—F1—>A—I with B
on that axis. Interference of the ‘fast’ nonsharpening
wave B—F1 with the ‘slow’ shock F1—A requires a
finite time and, at r=1, gives resolution. This
interference may or may not be complete before the
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Fig. 21. Observed (top) and simulated (bottom) effluent histories of protein separation (@-chymotrypsinogen, cytochrome c) on strong-acid
cation exchanger by development with phosphate-buffered DEAE-dextran displacer of pH 6 under conditions giving complete resolution
before attainment of final pattern (from Gadam et al., [54] reproduced with permission of AIChE J.).

leading edge of the new ‘fast’ nonsharpening wave
catches up with the also ‘fast’ shock A—! and makes
the flat top A disappear. In Fig. 22 it is not, and the
route upon resolution is F2-D—B—I—X—I, where
X is a point on the ¢, axis between A and 1. The
portion I->X—>1 (or I5A—-I) of the pattern is an
attenuating pulse with shock front and nonsharpening

rear, as in elution under overload conditions. The
shocks D—B and B—I eventually merge into a
single shock B—I. The overall effect of the lower
concentration of the developer is that the latter still
displaces solute 2, but is too slow to displace solute
3. As a result, that solute ‘runs away’ from the
displacement pattern in form of an overload peak.
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Fig. 22. Incomplete displacement development: profile routes (top left), distance—time diagram (top right), and successive composition
profiles (bottom) for displacement as in Fig. 18 but with developer at ¢, = 1.0 M, too dilute to displace solute 3. Routes shown on paths
grids of ¢,, ¢, and c,, ¢, planes (latter shaded). Transient routes during interference shown at times 7, and t,; t =resolution time.

Fig. 24 shows an experimental effluent history
observed under such conditions {55].

In Fig. 23 the developer concentration is even
lower, namely, below the watershed point W, on the
¢, axis. Here, development produces a route
F2—5I—->B—F1—5A—I. The front of the developer
now is so slow that both components of the mixture
‘run away’ from it. No displacement occurs. Rather,
the mixture F1 is eluted in exactly the same way as a
pulse under overload conditions, as though only pure
solvent or carrier gas were introduced into the

column instead of a displacement agent. The be-
havior is the same as in Fig. 16, except for the
difference in composition of the original mixture.
The situation in Figs. 22 and 23 corresponds to
what has been alluded to in the discussion of final
displacement patterns in Section 13 of Part I: The
single-component isotherms are not intersected by
the straight line connecting the g,, ¢, point of the
development agent with the origin, ¢,=0, ¢, =0
(‘Tiselius line’). This can be seen in Fig. 25, in
which the single-component isotherms of the three
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Fig. 23. Ineffective displacement development: profile routes for
separation as in Fig. 18 but with developer at ¢, =0.3 M, too
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Fig. 25. Single-component isotherms of solutes as in Figs. 18, 20,
22, and 23, with Tiselius lines for developer at 4.0, 1.0, and 0.3 M.

solutes are shown with the Tiselius lines for the
operations in Figs. 18, 22 and 23 (see also Fig. 16 in
Part I).

Note that a knowledge of the path grid allows the
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Fig. 24. Observed effluent composition history of peptide separation with developer concentration too low to displace solute of lowest
affinity. Column: Zorbax ODS; carrier: 40% methanol in 50 mM phosphate buffer pH 2.2; displacer: 30 mg/ml BEE. (From Subramanian et

al., [55] reproduced with permission of J. Chromatogr.)
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type of development behavior to be predicted with-
out further calculation: Normal behavior results if the
path from D across the ¢,, ¢, plane cuts through
compositions with higher concentrations than those
of the mixture; a normal final pattern but earlier
resolution with a still nonuniform band of solute 3
results if that path cuts through lower concentrations
than those of the mixture, but D itself is higher up on
the ¢, axis than the watershed point W,; solute 3
‘runs away’ if D is below W, on that axis; and no
displacement of either solute occurs if the point F2
of the displacer is below the watershed point W, on
the ¢, axis.

Regardless of the number of solutes, the final
pattern of a normal displacement development can be
found much more easily by the Tiselius construction
[10] shown in Fig. 16 in Part I and Fig. 25. However,
route construction is needed to identify the com-
positions of the transient plateaus, as may be neces-
sary if the separation of two solutes not adjacent in
the final pattern is of interest. Also, route construc-
tion in combination with the distance—time diagram
provides information on the column lengths and
development times needed to separate any pair of
solutes. Equations for calculation of these require-
ments for mixtures with arbitrary number of com-
ponents have been developed for ion exchange with
constant separation factors [56] and adsorption with
Langmuir isotherms [57,58] based on the mathe-

matics to be shown in Part III of this series. Note
also that separation may be complete before the final
pattern exclusively with flat-top bands has been
attained, and that in such cases the pattern at the
moment of complete resolution is more favorable
than the final one given by the Tiselius construction
(see Figs. 20 and 21) [54].

Ton-exchange displacement development [56,59] is
simpler: No counterion can ‘run away’ from the train
of others because pure solvent produces no move-
ment of counterions in the direction of flow. The
pattern generated thus always is of the type shown in
Fig. 18, except the concentrations in all bands of the
final pattern are the same as that of the displacing
counterion.

The distance—time diagrams of non-Riemann sys-
tems may contain finite distance-time regions of
noncoherence, produced by interference of diffuse
waves (see Fig. 15), by gradual variation of the
composition of the entering solution, or by an initial
composition profile with gradual variation (see Fig.
26). Any composition within such a noncoherent
area exists only at one point in distance and time,
and profile and history routes necessarily involve
different sequences of such transient compositions.
The distance-time diagrams in Figs. 15 and 26
suggest that noncoherence extending over finite
distance—time regions can be viewed as a superposi-
tion of coherent waves that have not yet separated
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Fig. 26. Finite distance—time regions of noncoherence produced by gradual variation of composition of entering fluid (left) and nonuniform
initial composition of column (right), for system with variance 2 producing two nonsharpening waves (schematic).
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from one another. This idea helps in forming a
qualitative picture of events, although it is of no use
in quantitative calculations because the superposition
is not additive.

In so-called stratified beds with sorbent layers of
different equilibrium properties, each layer has its
own, different path grid. Accordingly, when a coher-
ent wave enters a new layer, it becomes noncoherent
because its route does not coincide with a path of the
new grid. The wave thus breaks up into a set of new
coherent waves. If the original wave was diffuse,
noncoherence extends over a finite distance—time
region because the noncoherent composition vari-
ation at the entry to the layer extends over a finite
time.

[If the operation involves two or more interfer-
ences of waves of different families, one of them
may occur earlier in time than another, but at a
longer distance from the column inlet. If so, the
transient coherent history and profile routes between
the two interferences run along different composition
paths. For successive histories (composition as func-
tion of time), the route switch caused by the earlier
interference comes first; for successive profiles (com-
position as a function of distance), the switch caused
by the later interference comes first because it occurs
nearer the inlet.]

10. Quantitative construction of column
response

The composition route, in graphical or mathemati-
cal form, gives complete quantitative information
about the sequence of compositions in the column,
but does not indicate when and where the respective
compositions exist. The distance—time diagram sup-
plies that missing information. The combination of
the two provides a complete, compact, quantitative
description of the column response. From that de-
scription, concentration profiles and histories can be
generated as may be desired. In essence: The route
diagram provides the concentrations and shocks that
will occur. For a concentration profile at time ¢', the
distance—time diagram gives the distances z of
selected concentrations or shocks as the intersections
of their trajectories with the line ¢ =¢'; similarly, for

INPUT
sorption initial and
equilibria entry conditions
THEORY | path F::l eigen- J
grid velocities
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routes time

distance- diagram

time
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RESULTS

Fig. 27. Flow sheet for quantitative construction of column
response.

a concentration history at z = z', it provides the times
t as the intersections of the respective trajectories
with the line z =z".

Fig. 27 shows a flow sheet for such purposes. The
first step is to construct the path grid, either as a
graph or in abstract mathematical form. If this is
done step by step by repeated solution of the
eigenvalue problem, as described in Section 6,
eigenvelocities have been generated in the process
and should be noted. If a short-cut method has been
used, eigenvelocities are calculated at a number of
grid points. The procedure from here on depends on
whether this is or is not a Riemann problem.

10.1. Riemann problems

If this is a Riemann problem, its composition route
is established with the sequence rule given in Section
7. Next, its distance—time diagram is constructed
with the relevant eigenvelocities of compositions
within any nonsharpening waves, and shock veloci-
ties of any shocks (the velocity dz/dt is the slope of
the respective trajectory in the z,¢ plane); this is done
with Eq. 1.6 for shocks and with Eq. I1.4 for the
eigenvelocities of the respective compositions and
paths for nonsharpening waves.
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Fig. 28 illustrates a convenient procedure of
constructing the concentration history of a solute i at
a given location z' with use of the distance-time
diagram (z' may or may not be the column exit). A
horizontal line corresponding to z =z’ is entered into
the distance—time diagram. To construct the history,
the times ¢ at which trajectories intersect the z =z’
line are transposed to the abscissa of the history
diagram below. For any composition trajectory, the
time ¢ of intersection is the time at which the
concentration ¢; of that composition has reached
location z'; the respective c, value, read off the route
diagram or retrieved from the set {c,,...,c,} that
was used to calculate the eigenvelocity, is plotted at ¢
in that diagram. Similarly, for any shock trajectory,

distance, z
M

1l {
thn |
TR
|
|

= time, t [min]
Il
|

0 M om

Ci(B) ——e

conc., Gi

time, t [min]

Fig. 28. Use of distance—time diagram for quantitative construc-
tion of concentration histories, for trivariant Riemann system with
two shocks and one nonsharpening wave in history route
1-B—A—F. History at location z' compiled from trajectory
intersections with line z =z'.

the time 7 of its intersection with the line z =z is the
time at which the shock has reached the location z’;
the upstream and downstream concentrations of i at
the shock are given as the two ¢, values used in Eq.
1.6 and are plotted at ¢ in the history diagram. In this
way the complete history ¢,(r) at z’ is compiled point
by point.

The construction of the concentration profile of a
solute i at given time ¢’ is analogous. Here, a vertical
line corresponding to z=1t" is entered into the
distance time diagram, intersection distances z of
trajectories with that line are transposed to the
abscissa of the c,(z) profile diagram being con-
structed, and the respective values of ¢; are obtained
for plotting as above. (If, for convenience, direct
graphical transposition as in Fig. 28 is used, the
profile diagram appears to the right or left of the
distance—time diagram and is tilted 90°.)

10.2. Non-Riemann problems

The basic procedure is the same for non-Riemann
problems, with one exception. The profile or history
route in general varies with time or distance, respec-
tively, and this calls for a construction in which the
distance—time diagram and the route diagram are
used in tandem.

The case shown in Fig. 18 may serve as example.
Known are the compositions I, F1, and F2 and the
time span ¢t =0 to ¢ =t' over which the introduction
of F1 extends. The path grid is constructed, and from
it the intermediate compositions A, B, C, and D are
established as explained in Section 9. For construc-
tion of the distance—-time diagram, composition I is
entered along the z axis, and compositions F1 and F2
along the ¢ axis between 0 and ' and beyond ¢,
respectively. The route diagram before interferences
consists of two  quasi-Riemann  portions
F2—-D—B—>F1 and Fi—>A-—Il, all waves being
shocks. Their velocities are calculated with Eq. 1.6.
This allows their trajectories, originating from the
points (z=0, 1=0) and (z=0, t =1¢"), to be plotted
in the distance—time diagram (the shock velocity
gives the trajectory slope in the z, plane). The
intersection of the B—F1 and F1—>A trajectories is
the point of the first interference and the origin of
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new shock trajectories B—»C and C—A. Composi-
tion C is found in the route diagram as the intersec-
tion of the ‘fast’ path through A with the ‘slow’ path
through B. With knowledge of A, B, and C the
velocities of the new shocks are obtained from Eq.
1.6 and their trajectories are plotted. This procedure
is repeated for the subsequent mergers of D—B with
B—C and of C—»A with A—l. The distance—time
diagram is now complete and can be used for
construction of concentration profiles or histories as
described earlier.

11. Prediction without calculation

To this day, wave theory has not been very
popular among practicing chromatographers. The
principal reason appears to be the expectation that
experience in higher mathematics would be needed
and complex concepts and techniques would have to
be mastered. That is true to some extent for accurate
quantitative constructions. However, the basic ideas
are very simple: development toward coherence as a
‘stable’ state, and the coherence condition of equal
wave velocities of all solutes within a coherent wave.
Once these ideas are accepted, they can often be
used to for qualitative predictions of column re-
sponse with little or no further calculation or graphi-
cal construction. This will be illustrated with an
example, of pH variations in an ion-exchange col-
umn during stepwise elution with a buffer.

Suppose stepwise elution with a sodium-acetate
buffer is to be used for a separation of trace amounts
of amphoteric substrates such as amino acids or
peptides on a strong-base anion-exchange column.
Of interest are the pH variations in the column
induced by step changes in the composition (total
concentration and pH) of the entering buffer.

The wave equation

Q
v

YT Tx (ple)dg,/dc,

(14)

is valid for the co-ion Na™ as well as for the
counterions OH ™ and OAc ™. Na" is the only cation,
s0 its concentration equals the total electrolyte

concentration. As a co-ion, it is largely excluded
from the anion exchanger by the Donnan effect, so
that its concentration g, on the ion exchanger is and
remains close to zero. Accordingly, dgy,/dcy, re-
mains very small in any wave that involves a
significant variation of its solution concentration cy,,
and thus of total concentration. This being the case,
Eq. 1.4 shows that such a wave travels essentially at
the velocity of mobile-phase flow:

0

V. =EU

<

for wave with variation of ¢, (I1.5)

If such a ‘salinity wave’ is coherent, Eq. 1.5 applies
to the counterions also. Eq. 1.4 then requires dgg,,
and dg,,, to remain very small. That is, the salinity
wave cannot entail any significant exchange of
OAc ™ for OH".

Where any uptake or release of OAc by the ion
exchanger in exchange for OH  occurs, dg; and
therefore dg,/dc; are significant for these ions. Here,
application of Eq. 1.4 shows that any wave involving
such exchange is retarded relative to mobile-phase
flow:

0

v.<v for wave with variation of g, and goy

(IL6)

If such an ‘ion-exchange wave’ is coherent, con-
dition IL.6 applies to Na" also. Eq. 1.4 then is seen to
require dg,, /dcy, to be significant; because Donnan
exclusion keeps dg,, very small, it follows that dc,
must also be very small: The wave cannot involve a
significant change of total concentration*

- Under Riemann conditions the coherent pattern
must have two waves: a fast ‘salinity wave’
involving the variation of the total concentration
but no significant variation of the state of the ion
exchanger, and a slower ‘ion-exchange wave’
involving the exchange of counterions but no
variation of total concentration.

* If Donnan exclusion is ideal so that dg,, = 0 (or dq,, = 0), the
coherence condition requiring dqy,/dcy, >0 (or 4q,/Acy, >0)
in that wave is satisfied with dc,, =0 (or dcy, = 0), so that the
derivative (or finite-difference ratio) becomes indefinite.
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The salinity wave is indifferent (i.e., neither self-
sharpening nor nonsharpening); the ion-exchange
wave is either self-sharpening or nonsharpening,
depending on whether the concentration of the
preferred ion (OAc™ for most strong-base anion
exchangers) decreases or increases across the wave
in the direction of flow. In the plateau between the
two waves, the 1on exchanger is still in its initial
state, but the total concentration of the solution has
already changed to the new value (see Fig. 29, left).
Since OAc™ and OH™ ions have the same valence,
their separation factor can be assumed to vary little
with total concentration. To the extent that this is
true, the OH :OAc  ratio in the solution between
the two waves is about the same as downstream of
the fast wave, although the total concentration is
different.

If the step change in composition of the entering
buffer involves a variation of total electrolyte con-
centration, the pH in the solution between the
response waves may be higher, or lower, than it was
in both the initial and entering fluids at any time. For
example, suppose the step change is from a sodium-
acetate buffer of 0.1 M concentration and pH 9 to
one of 0.01 M and pH 8.5. As was shown above,

between the two waves the OH :OAc  ratio is about
the same as downstream of the fast wave, where the
pH is 9 and the total concentration is higher by a
factor 10. Accordingly, between the waves the OH™
concentration is about one order of magnitude lower
than at pH 9, that is, close to 8 and thereby
significantly lower than in the entering fluid both
before and after the step change. That a composition
variation of an entering buffer can produce such a
pH excursion is counter-intuitive, but not unusual
[60,61] (for an example, see Fig. 29, right).

12. Summary

Non-linear wave theory provides effective tools
for qualitative insight into and quantitative treatment
of multicomponent chromatographic systems at con-
centrations high enough for solutes to affect one
another’s behavior. A key concept is that of coher-
ence: An arbitrary composition variation entering the
column is in general noncoherent and is resolved into
a set of coherent waves that travel at different
velocities. The condition for coherence is that all
solutes have the same wave velocity at any point in
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Fig. 29. Column response in a buffer system: salinity wave (sodium wave) and ion exchange wave in anion exchange column in response to
step change in composition of entering sodium acetate buffer. Left: positions of waves in column. Right: observed and theoretical effluent
pH history; column IRA-400, buffer variation from 0.495 M and pH 11.5 to 0.015 M and pH 11.5. (From Helfferich and Bennett {61],

reproduced with permission of React. Polymers).
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distance and time within the respective wave. With
this condition, composition variations compatible
with coherence can be mapped as so-called com-
position paths in the composition space (with con-
centrations as the coordinates). The path grid so
obtained depends only on the equilibrium isotherm,
not on the initial and entry conditions of the respec-
tive operation. Accordingly, once constructed for a
particular system, the path grid can be used to
predict behavior under any initial and entry con-
ditions, much as one establishes the route of a car
trip on a road map. The combination of such routes
in the composition space with a distance—time
diagram provides a complete, compact description
from which concentration profiles and histories can
be generated as desired.

Typical applications include frontal analysis, elu-
tion from a uniformly saturated column, elution of a
pulse under overload conditions, displacement de-
velopment, and elution with a buffer. In each case,
the typical features familiar from experimental re-
sults are seen to arise from properties of the path
grid. Route construction in the latter allows the
compositions of transient plateaus to be established
without further calculation, and constructions with
route and distance—time diagrams in tandem can
provide information on time and column length
requirements for specified separations.

13. Glossary of symbols and terms

a; coefficient in Langmuir isotherm equation
(cm’g™")

b,  coefficient in Langmuir isotherm equation
(mmol ' cm’)

¢, concentration of solute i in moving phase (per
unit volume of moving phase) (mmol cm ™)

k, =g,/c,, distribution coefficient (cm’ g™ ")

g,  sorbent loading with solute i: amount of i in

sorbent (averaged over bead) per unit mass of

sorbate-free sorbent (mmol g~ ')

t time (s)
v’ linear velocity of moving-phase flow (cms ')
v, linear eigenvelocity of composition {c,, ... .c,}

. -1
in coherent wave (cms™ )

v. linear wave velocity of concentration c,

(cms™")

linear wave velocity of shock Ac, (cms™')

z column position (linear distance from inlet end
of packing) (cm)
finite difference across shock (operator)

€ fractional volume of moving phase in column
(dimensionless)

P bulk density of sorbent: mass of sorbate-free

sorbent per unit volume of column (gcm ™)

Solutes are numbered 1,2, ....n in the sequence of
decreasing affinity for the sorbent.

Compositions are denoted as follows: [=initial state
of column; F, Fl, F2=compositions introduced
during operation; A, B, C,...=plateau compositions
arising in column during operation, X=variable
(non-plateau) composition arising in column during
operation.

In distance—time diagrams, shock trajectories are
shown as heavy lines; coherent nonsharpening waves
are shown shaded and with trajectories of com-
positions as thin lines.

Definitions or explanations of frequently used techni-
cal terms are given in Table I.
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Appendix A

Outline of mathematics of coherence

This appendix provides an overview of the rel-
evant mathematics of ideal multicomponent theory.
It is not needed for general understanding, and is
intended only for orientation. The reader interested
in carrying out quantitative calculations is referred to
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Glossary of frequently used terms

Coherence

Competitive equilibrium

Composition
Composition path
Composition route

Composition space
Eigenvelocity

Front (of x)

History

Langmuir system
Langmuir-like system
Natural velocity

Nonsharpening wave
Particle velocity
Path

Path grid

Plateau

Profile

Riemann problem
Route

selectivity
Selectivity reversal
Self-sharpening wave
Shock

Trajectory

Wave

Wave velocity

State in which coexisting concentrations advance jointly, at same velocity (state which waves in column strive
to attain) (Section 4)

Equilibrium in which competition for sorption sites depresses uptake by sorbent (Section 6)

Ensemble of concentrations of all solutes

Curve in composition space along which coherence condition is met (Section 6)

Curve in composition space corresponding to sequence of compositions in column at given time or distance
(Section 7)

Coordinate space with concentrations as coordinates (Section 6)

Natural velocity of composition in coherent wave (Section 5)

Wave or shock with species x present only on its upstream side

Concentration or composition as function of time at given location

System with Langmuir sorption isotherm, g, =a,c,/[1 + 2,(b,c,)]

System with competitive sorption equilibrium and no selectivity reversals (Section 6)

Velocity at which a concentration or composition would advance under conditions of ideal chromatography
(Section 1.2 in Part 1)

Wave with natural tendency to spread (Section 1.4 in Part I and Section 3 in the present paper)

Average velocity of molecules of x in direction of flow (Section 1.2)

See composition path

Grid of composition paths in composition space (Section 6)

Zone of uniform composition extending over finite distance or time

Concentration or composition as function of distance at given time

System with uniform initial composition of medium and constant composition of entering fluid (Section 4)

See composition route

preference of sorbent for one solute over another

Change in preference of sorbent for one solute over another

Wave with natural tendency to sharpen (Section 1.4 and Section 3)

Wave that has remained (or has sharpened into) ideal discontinuity (Section 1.4 and Section 3)

Curve traced by composition or shock in distance-time plane (Section 2)

Variation of dependent variables (concentrations) with distance or time (Sections 1.1 and Section 3)

Velocity of a concentration or composition in direction of flow (Sections 1.2 and Section 3)

textbooks and reviews as guides to original literature
that might be of help [2,14,21,33,62].

The basis of the mathematical treatment are the
wave equation of a solute j

0
v

97 1+ (ple)dg,lac)).

v (L3)

and the differential coherence condition of equal
wave velocities

(dg,/dc;). = A foralli (11.7)

The essential premises are local equilibrium, ideal
plug flow, and mass transfer in axial direction by
convection only.

Any coherent wave is represented by a curve in
the composition space (a path segment), and this
curve is the same regardless of whether the wave is

viewed as a composition variation with time 7 or
distance z. Accordingly, the coherence condition can
be written in terms of a total derivative

dg,/dc,=A foralli (11.2)

(constrained to coherent behavior) instead of the
partial derivative as in Egs. 1.3 and I1.7 above.

At local equilibrium, the stationary-phase con-
centration g¢; is a function of the moving-phase
composition:

g;=q/cy,....c,) (IL.1)

The total differential dg, in Eq. 1.2 can therefore be
expanded:

dg; If;,dc[ +f)'2dc2 + . +fj'ndcn (11.8)

where the /), are defined as
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fi=0q,18¢,), 1uk (IL9)

With Eq. I1.8, the coherence condition 1.2 becomes,
in matrix form:

f;l_A f;z fia f:n
f;l féz_/\ fés f;n
f;l féz f;3_/\ fz,.n
f:,l fr'12 f:xs f:xn_A
dc,
dc,
X4 dey =0 (11.10)
dc

This is a typical eigenvalue problem, with n eigen-
values A that can be obtained by setting the deter-
minant of the matrix in Eq. 11.10 equal to zero (in
bivariant systems the eigenvalues are the two roots
of a quadratic equation).

In view of the wave equation 1.4, the eigenvelocity
in terms of the respective eigenvalue A is given by

0
v

Y =T+ (plon

(IL4)
This equation, with the n eigenvalues A, gives the n
eigenvelocities that can be assumed by the com-
position {c, ...,c,} for which the eigenvalue prob-
lem was solved.

Each eigenvalue A is associated with an eigenvec-
tor {dc,, . .. ,dc,} which indicates the direction of the
respective route in the composition space. The
eigenvectors can be obtained from Eq. I1.10 after the
respective value of A has been substituted.

Note that Langmuir systems can be handled with
much simpler mathematics, to be shown in Part III of
this series.

Appendix B

Shock routes in nonideal non-Langmuir systems

In non-Langmuir systems with curved differential
composition paths, the fact that nonidealities produce
shock layers instead of ideal shocks (i.e., concen-

tration discontinuities) has an interesting conse-
quence. The nonideality lets the compositions be-
tween the upstream and downstream composition
end points become physically realized. The sequence
of these compositions in general does not follow a
(differential) composition path and so is noncoher-
ent. The local tendency to establish coherence dis-
torts the composition route of the shock layer
slightly, usually toward an S shape. The shock can
be viewed as a continuous, traveling source of minor
waves of other families that run ahead or are left
behind. A quantitative treatment requires step-by-
step integration of the conservation equations over
distance and time and is tedious. Fortunately, the
effect is quite minor under most conditions of
interest.

Appendix C

Construction of a Langmuir path grid

The path grid of any two-component Langmuir
system can be constructed as follows.

All paths are straight lines. The grid has a so-
called watershed point (point W in Fig. 30) which
divides the c, axis into two segments: ‘Slow’ paths
originate from the segment above the watershed

"slow" paths
— — ‘"fast" paths

D 0 A B
conc. of solute 2, c2

Fig. 30. Construction of Langmuir path grid with rule of equal
intercept ratios (for a b,/a,b, = 0.67).
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point; ‘fast’ paths from that below. The watershed
point is at

_(a,/ay)—1

c, b , ¢,=0

(11.11)

After the watershed point has been plotted, all
paths can be drawn in with the so-called rule of
equal intercept ratios [63]: Paths of the same family
that intersect the ¢, axis at equidistant points also
intersect the c, axis (or its extension to negative c,
values) at equidistant points. For any two paths of
the same family, the ratio of the distance between
their intersections with the ¢, axis to that between
their intersections with the ¢, axis is given by

ratio=a,b,/a,b, (I1.12)

(This is also the ratio of the ultimate capacities a, /b,
to a,/b, in the respective single-component sys-
tems.) For example, in Fig. 30, the ratio of the
distances A-B to A'-B’ (for a ‘slow’ path) is given
by Eq. I1.12, and so is that of the distances C-D to
C'-D’ (for a ‘fast’ path). Note that the ¢, axis itself
is a ‘slow’ path between 0 and W, and a ‘fast’ path
above W.

Purists confine Langmuir equilibria to systems in
which the ratio a,/b, is the same for all solutes
(thermodynamics requires this for sorption in a
idealized system that, among other facets, implies
equal ultimate capacities g, = a,b, for all competing
solutes). For such systems the ratio given by Eq.
I1.12 is unity, regardless of the absolute values of the
Langmuir coefficients and separation factors. Ac-
cordingly, the grids of such Langmuir systems differ
from one another only in the concentration scales on
their axes. In contrast, Eq. I1.12 is more generally
applicable to empirical Langmuir isotherms whose
best-fit coefficients are not confined to equal a,/b,
ratios.
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